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1. Introduction

Should we share a secret?

Proverbial wisdom tells us to be careful

openclipart.org/detail/76603

“Three may keep a secret

, if two of them are dead.

”
(In: “Poor Richard’s Almanack.” Benjamin Franklin, 1735) [Sau34]

[Sau34] R. Saunders. Poor
Richard’s Almanack — 1735.
Benjamin Franklin, 1734

∗/mw02322/Benjamin-Franklin.jpg

“Two may keep counsel

, putting one away.

”
(In: “Romeo and Juliet.” William Shakespeare, 1597) [Sha97]

[Sha97] W. Shakespeare. An
excellent conceited Tragedie of
Romeo and Juliet.
Printed by John Danter, London,
1597
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“For three may kepe counseil

if twain be away!

”
(In: The Ten Commandments of Love. Geoffrey Chaucer, 1340–1400) [Cha00]

[Cha00] G. Chaucer. The Ten
Commandments of Love, 1340–
1400.
See “For three may kepe coun-
seil if twain be away!” in the
“Secretnesse” stanza of the poem.
https://sites.fas.harvard.edu/ chaucer/special/lifemann/love/ten-
comm.html. Accessed: July 2018

∗/mw01262/Geoffrey-Chaucer.jpg

∗ = https://collectionimages.npg.org.uk/large/

This is specially relevant for secret keys in modern cryptography.

openclipart.org/detail/101407

Cryptography relies on:

I secrecy, correctness, availability ... of cryptographic keys

I implementations that use keys to

operate

an algorithm

4/30



1. Introduction

Should we share a secret?

Proverbial wisdom tells us to be careful

openclipart.org/detail/76603

“Three may keep a secret

, if two of them are dead.

”
(In: “Poor Richard’s Almanack.” Benjamin Franklin, 1735) [Sau34]

[Sau34] R. Saunders. Poor
Richard’s Almanack — 1735.
Benjamin Franklin, 1734

∗/mw02322/Benjamin-Franklin.jpg

“Two may keep counsel

, putting one away.

”
(In: “Romeo and Juliet.” William Shakespeare, 1597) [Sha97]

[Sha97] W. Shakespeare. An
excellent conceited Tragedie of
Romeo and Juliet.
Printed by John Danter, London,
1597

∗/mw11574/William-Shakespeare.jpg

“For three may kepe counseil

if twain be away!

”
(In: The Ten Commandments of Love. Geoffrey Chaucer, 1340–1400) [Cha00]

[Cha00] G. Chaucer. The Ten
Commandments of Love, 1340–
1400.
See “For three may kepe coun-
seil if twain be away!” in the
“Secretnesse” stanza of the poem.
https://sites.fas.harvard.edu/ chaucer/special/lifemann/love/ten-
comm.html. Accessed: July 2018

∗/mw01262/Geoffrey-Chaucer.jpg

∗ = https://collectionimages.npg.org.uk/large/

This is specially relevant for secret keys in modern cryptography.

openclipart.org/detail/101407

Cryptography relies on:

I secrecy, correctness, availability ... of cryptographic keys

I implementations that use keys to

operate

an algorithm

4/30



1. Introduction

Should we share a secret?

Proverbial wisdom tells us to be careful

openclipart.org/detail/76603

“Three may keep a secret, if two of them are dead.”
(In: “Poor Richard’s Almanack.” Benjamin Franklin, 1735) [Sau34]

[Sau34] R. Saunders. Poor
Richard’s Almanack — 1735.
Benjamin Franklin, 1734

∗/mw02322/Benjamin-Franklin.jpg

“Two may keep counsel, putting one away.”
(In: “Romeo and Juliet.” William Shakespeare, 1597) [Sha97]

[Sha97] W. Shakespeare. An
excellent conceited Tragedie of
Romeo and Juliet.
Printed by John Danter, London,
1597

∗/mw11574/William-Shakespeare.jpg

“For three may kepe counseil if twain be away! ”
(In: The Ten Commandments of Love. Geoffrey Chaucer, 1340–1400) [Cha00]

[Cha00] G. Chaucer. The Ten
Commandments of Love, 1340–
1400.
See “For three may kepe coun-
seil if twain be away!” in the
“Secretnesse” stanza of the poem.
https://sites.fas.harvard.edu/ chaucer/special/lifemann/love/ten-
comm.html. Accessed: July 2018

∗/mw01262/Geoffrey-Chaucer.jpg

∗ = https://collectionimages.npg.org.uk/large/

This is specially relevant for secret keys in modern cryptography.

openclipart.org/detail/101407

Cryptography relies on:

I secrecy, correctness, availability ... of cryptographic keys

I implementations that use keys to

operate

an algorithm

4/30



1. Introduction

Should we share a secret?

Proverbial wisdom tells us to be careful

openclipart.org/detail/76603

“Three may keep a secret, if two of them are dead.”
(In: “Poor Richard’s Almanack.” Benjamin Franklin, 1735) [Sau34]

[Sau34] R. Saunders. Poor
Richard’s Almanack — 1735.
Benjamin Franklin, 1734

∗/mw02322/Benjamin-Franklin.jpg

“Two may keep counsel, putting one away.”
(In: “Romeo and Juliet.” William Shakespeare, 1597) [Sha97]

[Sha97] W. Shakespeare. An
excellent conceited Tragedie of
Romeo and Juliet.
Printed by John Danter, London,
1597

∗/mw11574/William-Shakespeare.jpg

“For three may kepe counseil if twain be away! ”
(In: The Ten Commandments of Love. Geoffrey Chaucer, 1340–1400) [Cha00]

[Cha00] G. Chaucer. The Ten
Commandments of Love, 1340–
1400.
See “For three may kepe coun-
seil if twain be away!” in the
“Secretnesse” stanza of the poem.
https://sites.fas.harvard.edu/ chaucer/special/lifemann/love/ten-
comm.html. Accessed: July 2018

∗/mw01262/Geoffrey-Chaucer.jpg

∗ = https://collectionimages.npg.org.uk/large/

This is specially relevant for secret keys in modern cryptography.

openclipart.org/detail/101407

Cryptography relies on:

I secrecy, correctness, availability ... of cryptographic keys

I implementations that use keys to

operate

an algorithm

4/30



1. Introduction

Should we share a secret?

Proverbial wisdom tells us to be careful

openclipart.org/detail/76603

“Three may keep a secret, if two of them are dead.”
(In: “Poor Richard’s Almanack.” Benjamin Franklin, 1735) [Sau34]

[Sau34] R. Saunders. Poor
Richard’s Almanack — 1735.
Benjamin Franklin, 1734

∗/mw02322/Benjamin-Franklin.jpg

“Two may keep counsel, putting one away.”
(In: “Romeo and Juliet.” William Shakespeare, 1597) [Sha97]

[Sha97] W. Shakespeare. An
excellent conceited Tragedie of
Romeo and Juliet.
Printed by John Danter, London,
1597

∗/mw11574/William-Shakespeare.jpg

“For three may kepe counseil if twain be away! ”
(In: The Ten Commandments of Love. Geoffrey Chaucer, 1340–1400) [Cha00]

[Cha00] G. Chaucer. The Ten
Commandments of Love, 1340–
1400.
See “For three may kepe coun-
seil if twain be away!” in the
“Secretnesse” stanza of the poem.
https://sites.fas.harvard.edu/ chaucer/special/lifemann/love/ten-
comm.html. Accessed: July 2018

∗/mw01262/Geoffrey-Chaucer.jpg

∗ = https://collectionimages.npg.org.uk/large/

This is specially relevant for secret keys in modern cryptography.

openclipart.org/detail/101407

Cryptography relies on:

I secrecy, correctness, availability ... of cryptographic keys

I implementations that use keys to

operate

an algorithm

4/30



1. Introduction

Should we share a secret?

Proverbial wisdom tells us to be careful

openclipart.org/detail/76603

“Three may keep a secret, if two of them are dead.”
(In: “Poor Richard’s Almanack.” Benjamin Franklin, 1735) [Sau34]

[Sau34] R. Saunders. Poor
Richard’s Almanack — 1735.
Benjamin Franklin, 1734

∗/mw02322/Benjamin-Franklin.jpg

“Two may keep counsel, putting one away.”
(In: “Romeo and Juliet.” William Shakespeare, 1597) [Sha97]

[Sha97] W. Shakespeare. An
excellent conceited Tragedie of
Romeo and Juliet.
Printed by John Danter, London,
1597

∗/mw11574/William-Shakespeare.jpg

“For three may kepe counseil if twain be away! ”
(In: The Ten Commandments of Love. Geoffrey Chaucer, 1340–1400) [Cha00]

[Cha00] G. Chaucer. The Ten
Commandments of Love, 1340–
1400.
See “For three may kepe coun-
seil if twain be away!” in the
“Secretnesse” stanza of the poem.
https://sites.fas.harvard.edu/ chaucer/special/lifemann/love/ten-
comm.html. Accessed: July 2018

∗/mw01262/Geoffrey-Chaucer.jpg

∗ = https://collectionimages.npg.org.uk/large/

This is specially relevant for secret keys in modern cryptography.

openclipart.org/detail/101407

Cryptography relies on:

I secrecy, correctness, availability ... of cryptographic keys

I implementations that use keys to

operate

an algorithm

4/30



1. Introduction

Should we share a secret?

Proverbial wisdom tells us to be careful

openclipart.org/detail/76603

“Three may keep a secret, if two of them are dead.”
(In: “Poor Richard’s Almanack.” Benjamin Franklin, 1735) [Sau34]

[Sau34] R. Saunders. Poor
Richard’s Almanack — 1735.
Benjamin Franklin, 1734

∗/mw02322/Benjamin-Franklin.jpg

“Two may keep counsel, putting one away.”
(In: “Romeo and Juliet.” William Shakespeare, 1597) [Sha97]

[Sha97] W. Shakespeare. An
excellent conceited Tragedie of
Romeo and Juliet.
Printed by John Danter, London,
1597

∗/mw11574/William-Shakespeare.jpg

“For three may kepe counseil if twain be away! ”
(In: The Ten Commandments of Love. Geoffrey Chaucer, 1340–1400) [Cha00]

[Cha00] G. Chaucer. The Ten
Commandments of Love, 1340–
1400.
See “For three may kepe coun-
seil if twain be away!” in the
“Secretnesse” stanza of the poem.
https://sites.fas.harvard.edu/ chaucer/special/lifemann/love/ten-
comm.html. Accessed: July 2018

∗/mw01262/Geoffrey-Chaucer.jpg

∗ = https://collectionimages.npg.org.uk/large/

This is specially relevant for secret keys in modern cryptography.

openclipart.org/detail/101407

Cryptography relies on:

I secrecy, correctness, availability ... of cryptographic keys

I implementations that use keys to operate an algorithm

4/30



1. Introduction

Should we share a secret?

Proverbial wisdom tells us to be careful

openclipart.org/detail/76603

“Three may keep a secret, if two of them are dead.”
(In: “Poor Richard’s Almanack.” Benjamin Franklin, 1735) [Sau34]

[Sau34] R. Saunders. Poor
Richard’s Almanack — 1735.
Benjamin Franklin, 1734

∗/mw02322/Benjamin-Franklin.jpg

“Two may keep counsel, putting one away.”
(In: “Romeo and Juliet.” William Shakespeare, 1597) [Sha97]

[Sha97] W. Shakespeare. An
excellent conceited Tragedie of
Romeo and Juliet.
Printed by John Danter, London,
1597

∗/mw11574/William-Shakespeare.jpg

“For three may kepe counseil if twain be away! ”
(In: The Ten Commandments of Love. Geoffrey Chaucer, 1340–1400) [Cha00]

[Cha00] G. Chaucer. The Ten
Commandments of Love, 1340–
1400.
See “For three may kepe coun-
seil if twain be away!” in the
“Secretnesse” stanza of the poem.
https://sites.fas.harvard.edu/ chaucer/special/lifemann/love/ten-
comm.html. Accessed: July 2018

∗/mw01262/Geoffrey-Chaucer.jpg

∗ = https://collectionimages.npg.org.uk/large/

This is specially relevant for secret keys in modern cryptography.

openclipart.org/detail/101407

Cryptography relies on:

I secrecy, correctness, availability ... of cryptographic keys

I implementations that use keys to operate an algorithm

4/30



1. Introduction

Crypto can be affected by vulnerabilities!

Attacks can exploit differences between ideal vs. real implementations

“Bellcore
attack” (1997)

[BDL97]

[SH07]

Cold-boot
attacks (2009)

[HSH+09]

[Don13]

Heartbleed
bug (2014)

[DLK+14]

heartbleed.com

“ZigBee Chain
reaction” (2017)

[RSWO17]

[RSWO17]

Meltdown &
Spectre (2017)

[LSG+18, KGG+18]

meltdownattack.com

Foreshadow
(2018)

[BMW+18, WBM+18]

foreshadowattack.eu

Microarchitectural
Data Sampling (2019)

[MDS19]

mdsattacks.com

Also, operators of cryptographic implementations can go rogue

How can we address

single-points of failure?

*question-2.html *4296.html

*colored-elephant.html

* = clker.com/clipart-
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1. Introduction

The threshold approach

At high-level:

use redundancy & diversity to mitigate

the compromise of up to a threshold

number (f -out-of-n) of components

The red dancing devil is from
clker.com/clipart-13643.html

The intuitive aim:

improve security

vs.

a non-threshold scheme

NIST-CSD wants to standardize
threshold schemes for cryptographic primitives

Potential primitives: signing, decryption, enciphering, key-generation, ...

Some properties:

I withstands several compromised components;
I needs several uncompromised components;
I prevents secret keys from being in one place;
I enhances resistance against side-channel attacks; ...
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1. Introduction

Secret Sharing Schemes (a starting point)

Split a secret key into n secret “shares” for storage at rest.

y

x0

Shamir scheme (1979)
[Sha79]ys

Λ(x)
yA

1

Alice

yB

2

Bob

yC

3

Cai

Humanoid cliparts:
clker.com/clipart-*.html

Alice: *=2478
Bob: *=2482
Cai: *=2479

Example 2-out-of-n secret sharing
I The secret ys is placed in the y-axis;
I A random line Λ is drawn crossing the secret;
I Each share is a point (Λ(i), i) in the line Λ;

Each share alone has no information about the secret.

Any pair of shares allows recovering the secret

But how to avoid recombining the key when the key is needed by an algorithm?

Use threshold schemes for cryptographic primitives (next)
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I Each share is a point (Λ(i), i) in the line Λ;

Each share alone has no information about the secret.
Any pair of shares allows recovering the secret

But how to avoid recombining the key when the key is needed by an algorithm?

Use threshold schemes for cryptographic primitives (next)
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1. Introduction

Goal(s) for this presentation

Overview the NIST effort towards standardization of threshold schemes

1. Convey high-dimensionality of the threshold space

2. Describe the steps so far and ahead

3. Motivate feedback and engagement from stakeholders
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2. Preliminaries

A simple example: RSA signature (or decryption) [RSA78]

[RSA78] R. L. Rivest, A. Shamir,

and L. Adleman. A method for
obtaining digital signatures and
public-key cryptosystems.

Communications of the

ACM, 21(2):120–126, 1978.

DOI:10.1145/359340.359342

Conventional scheme (k = n = 1)

I KeyGen (by signer):
I Public Modulus: N = p · q
I Secret SignKey: d
I Public VerKey: e (= d−1

(mod φ))

I Sign(m): σ = md
(mod N)

I Verify(σ,m): σe =? m (mod N)

A 3-out-of-3 threshold scheme (k = n = 3)

I KeyGen (by dealer):
I Same N, d, e
I SubKeys: d1, d2, d3 : d1 + d2 + d3 = d (mod φ)

I Sign

(m): { separate: si = mdi (mod N) : i = 1, 2, 3

combine: σ = s1 · s2 · s3 (mod N) }
I Verify(σ,m): σe =? m (mod N)

About this threshold scheme:

SignKey d not recombined; can reshare d leaving e fixed; same σ; efficient!

Facilitating setting: ∃ dealer; ∃ homomorphism; all parties learn m.

Not fault-tolerant: a single sub-signer can boycott a correct signing.

Can other threshold schemes be implemented:
@ dealer, @ homomorphisms, secret-shared m, withstanding f malicious signers?

Yes, using threshold cryptography (with more complicated schemes)

10/30
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(mod N)

I Verify(σ,m): σe =? m (mod N)
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2. Preliminaries

What do thresholds k and f mean?

3-out-of-3 decryption:
I Availability: 3 nodes needed to decrypt

(k = 3, f = 0)

I Key secrecy: okay while 1 share is secret

(k = 1, f = 2)

clker.com/clipart-encryption.html

(Each security property has its own k and f )

2-out-of-3 signature:
I Availability: 2 nodes needed to sign

(k = 2, f = 1)

I Key secrecy: okay while 2 shares are secret

(k = 2, f = 1)

clker.com/clipart-3712.html

But does any of these schemes improve security?

(compared with a non-threshold scheme (n = k = 1, f = 0))

It depends: “k-out-of-n” or “f -out-of-n” is not a sufficient
characterization for a comprehensive security assertion

Depends on attack model (e.g., attack surface, ...), system model (e.g., rejuvenations, ...), ...

11/30



2. Preliminaries

What do thresholds k and f mean?

3-out-of-3 decryption:
I Availability: 3 nodes needed to decrypt

(k = 3, f = 0)

I Key secrecy: okay while 1 share is secret

(k = 1, f = 2)

clker.com/clipart-encryption.html

(Each security property has its own k and f )

2-out-of-3 signature:
I Availability: 2 nodes needed to sign

(k = 2, f = 1)

I Key secrecy: okay while 2 shares are secret

(k = 2, f = 1)

clker.com/clipart-3712.html

But does any of these schemes improve security?

(compared with a non-threshold scheme (n = k = 1, f = 0))

It depends: “k-out-of-n” or “f -out-of-n” is not a sufficient
characterization for a comprehensive security assertion

Depends on attack model (e.g., attack surface, ...), system model (e.g., rejuvenations, ...), ...

11/30



2. Preliminaries

What do thresholds k and f mean?
3-out-of-3 decryption:

I Availability: 3 nodes needed to decrypt (k = 3, f = 0)

I Key secrecy: okay while 1 share is secret

(k = 1, f = 2)

clker.com/clipart-encryption.html

(Each security property has its own k and f )

2-out-of-3 signature:
I Availability: 2 nodes needed to sign

(k = 2, f = 1)

I Key secrecy: okay while 2 shares are secret

(k = 2, f = 1)

clker.com/clipart-3712.html

But does any of these schemes improve security?

(compared with a non-threshold scheme (n = k = 1, f = 0))

It depends: “k-out-of-n” or “f -out-of-n” is not a sufficient
characterization for a comprehensive security assertion

Depends on attack model (e.g., attack surface, ...), system model (e.g., rejuvenations, ...), ...

11/30



2. Preliminaries

What do thresholds k and f mean?
3-out-of-3 decryption:
I Availability: 3 nodes needed to decrypt (k = 3, f = 0)

I Key secrecy: okay while 1 share is secret (k = 1, f = 2)
clker.com/clipart-encryption.html

(Each security property has its own k and f )

2-out-of-3 signature:
I Availability: 2 nodes needed to sign

(k = 2, f = 1)

I Key secrecy: okay while 2 shares are secret

(k = 2, f = 1)

clker.com/clipart-3712.html

But does any of these schemes improve security?

(compared with a non-threshold scheme (n = k = 1, f = 0))

It depends: “k-out-of-n” or “f -out-of-n” is not a sufficient
characterization for a comprehensive security assertion

Depends on attack model (e.g., attack surface, ...), system model (e.g., rejuvenations, ...), ...

11/30



2. Preliminaries

What do thresholds k and f mean?

3-out-of-3 decryption:
I Availability: 3 nodes needed to decrypt (k = 3, f = 0)
I Key secrecy: okay while 1 share is secret (k = 1, f = 2)

clker.com/clipart-encryption.html

(Each security property has its own k and f )

2-out-of-3 signature:
I Availability: 2 nodes needed to sign

(k = 2, f = 1)

I Key secrecy: okay while 2 shares are secret

(k = 2, f = 1)

clker.com/clipart-3712.html

But does any of these schemes improve security?

(compared with a non-threshold scheme (n = k = 1, f = 0))

It depends: “k-out-of-n” or “f -out-of-n” is not a sufficient
characterization for a comprehensive security assertion

Depends on attack model (e.g., attack surface, ...), system model (e.g., rejuvenations, ...), ...

11/30



2. Preliminaries

What do thresholds k and f mean?

3-out-of-3 decryption:
I Availability: 3 nodes needed to decrypt (k = 3, f = 0)
I Key secrecy: okay while 1 share is secret (k = 1, f = 2)

clker.com/clipart-encryption.html

(Each security property has its own k and f )

2-out-of-3 signature:
I Availability: 2 nodes needed to sign

(k = 2, f = 1)

I Key secrecy: okay while 2 shares are secret

(k = 2, f = 1)

clker.com/clipart-3712.html

But does any of these schemes improve security?

(compared with a non-threshold scheme (n = k = 1, f = 0))

It depends: “k-out-of-n” or “f -out-of-n” is not a sufficient
characterization for a comprehensive security assertion

Depends on attack model (e.g., attack surface, ...), system model (e.g., rejuvenations, ...), ...

11/30



2. Preliminaries

What do thresholds k and f mean?

3-out-of-3 decryption:
I Availability: 3 nodes needed to decrypt (k = 3, f = 0)
I Key secrecy: okay while 1 share is secret (k = 1, f = 2)

clker.com/clipart-encryption.html

(Each security property has its own k and f )

2-out-of-3 signature:

I Availability: 2 nodes needed to sign (k = 2, f = 1)

I Key secrecy: okay while 2 shares are secret

(k = 2, f = 1)

clker.com/clipart-3712.html

But does any of these schemes improve security?

(compared with a non-threshold scheme (n = k = 1, f = 0))

It depends: “k-out-of-n” or “f -out-of-n” is not a sufficient
characterization for a comprehensive security assertion

Depends on attack model (e.g., attack surface, ...), system model (e.g., rejuvenations, ...), ...

11/30



2. Preliminaries

What do thresholds k and f mean?

3-out-of-3 decryption:
I Availability: 3 nodes needed to decrypt (k = 3, f = 0)
I Key secrecy: okay while 1 share is secret (k = 1, f = 2)

clker.com/clipart-encryption.html

(Each security property has its own k and f )

2-out-of-3 signature:
I Availability: 2 nodes needed to sign (k = 2, f = 1)

I Key secrecy: okay while 2 shares are secret (k = 2, f = 1)
clker.com/clipart-3712.html

But does any of these schemes improve security?

(compared with a non-threshold scheme (n = k = 1, f = 0))

It depends: “k-out-of-n” or “f -out-of-n” is not a sufficient
characterization for a comprehensive security assertion

Depends on attack model (e.g., attack surface, ...), system model (e.g., rejuvenations, ...), ...

11/30



2. Preliminaries

What do thresholds k and f mean?

3-out-of-3 decryption:
I Availability: 3 nodes needed to decrypt (k = 3, f = 0)
I Key secrecy: okay while 1 share is secret (k = 1, f = 2)

clker.com/clipart-encryption.html

(Each security property has its own k and f )

2-out-of-3 signature:
I Availability: 2 nodes needed to sign (k = 2, f = 1)
I Key secrecy: okay while 2 shares are secret (k = 2, f = 1)

clker.com/clipart-3712.html

But does any of these schemes improve security?

(compared with a non-threshold scheme (n = k = 1, f = 0))

It depends: “k-out-of-n” or “f -out-of-n” is not a sufficient
characterization for a comprehensive security assertion

Depends on attack model (e.g., attack surface, ...), system model (e.g., rejuvenations, ...), ...

11/30



2. Preliminaries

What do thresholds k and f mean?

3-out-of-3 decryption:
I Availability: 3 nodes needed to decrypt (k = 3, f = 0)
I Key secrecy: okay while 1 share is secret (k = 1, f = 2)

clker.com/clipart-encryption.html

(Each security property has its own k and f )

2-out-of-3 signature:
I Availability: 2 nodes needed to sign (k = 2, f = 1)
I Key secrecy: okay while 2 shares are secret (k = 2, f = 1)

clker.com/clipart-3712.html

But does any of these schemes improve security?

(compared with a non-threshold scheme (n = k = 1, f = 0))

It depends: “k-out-of-n” or “f -out-of-n” is not a sufficient
characterization for a comprehensive security assertion

Depends on attack model (e.g., attack surface, ...), system model (e.g., rejuvenations, ...), ...

11/30



2. Preliminaries

What do thresholds k and f mean?

3-out-of-3 decryption:
I Availability: 3 nodes needed to decrypt (k = 3, f = 0)
I Key secrecy: okay while 1 share is secret (k = 1, f = 2)

clker.com/clipart-encryption.html

(Each security property has its own k and f )

2-out-of-3 signature:
I Availability: 2 nodes needed to sign (k = 2, f = 1)
I Key secrecy: okay while 2 shares are secret (k = 2, f = 1)

clker.com/clipart-3712.html

But does any of these schemes improve security?

(compared with a non-threshold scheme (n = k = 1, f = 0))

It depends: “k-out-of-n” or “f -out-of-n” is not a sufficient
characterization for a comprehensive security assertion

Depends on attack model (e.g., attack surface, ...), system model (e.g., rejuvenations, ...), ...

11/30



3. Step 1: NISTIR

Outline

1. Introduction

2. Preliminaries

3. Step 1: NISTIR

4. Step 2: NTCW

5. Step 3: preliminary roadmap

6. Final remarks

12/30



3. Step 1: NISTIR

NIST Internal Report (NISTIR) 8214

Threshold Schemes for Cryptographic Primitives — Challenges and Opportunities
in Standardization and Validation of Threshold Cryptography. [BMV18] doi:10.6028/NIST.IR.8214

The report sets a basis for discussion:

I need to characterize threshold schemes
I need to engage with stakeholders
I need to define criteria for standardization

Image adapted from:
openclipart.org/detail/283392

NISTIR 8214

Threshold Schemes for
Cryptographic Primitives

Challenges and Opportunities in Standardization and
Validation of Threshold Cryptography

Luís T. A. N. Brandão
Nicky Mouha

Apostol Vassilev

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8214

Past timeline:

I 2018-July: Draft online 3 months for public comments
I 2018-October: Received comments from 13 external sources
I 2019-March: Final version online, along with “diff” and received comments

https://csrc.nist.gov/publications/detail/nistir/8214/final

13/30
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3. Step 1: NISTIR

Characterizing threshold schemes

To reflect on a threshold scheme, start by characterizing 4 main features:

• Kinds of threshold • Communication interfaces

• Executing platform • Setup and maintenance

The cliparts are from openclipart.org/detail/∗, with ∗ ∈ {71491, 190624, 101407, 161401, 161389}

Each feature spans distinct options that affect security in different ways.

A characterization provides a better context for security assertions.

But there are other factors ...
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3. Step 1: NISTIR

Deployment context

I Application context. Should it affect security requirements?

I signature correctness — may be deferred to client
I decryption correctness — may require robust protocol

clker.com/clipart-3712.html clker.com/clipart-encryption.html

I Conceivable attack types.
clker.com/clipart-10778

I Active vs. passive
I Static vs. adaptive
I Stealth vs. detected

I Invasive (physical) vs. non-invasive
I Side-channel vs. communication interfaces
I Parallel vs. sequential (wrt attacking nodes)

A threshold scheme improving security against an
attack in an application may be powerless or degrade

security for another attack in another application
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3. Step 1: NISTIR

The validation challenge

Devise standards of testable and validatable threshold schemes
vs.

devise testing and validation for standardized threshold schemes

Validation is needed in the federal context:

I need to use validated implementations [tC96]

[tC96] U. S. 104th Congress.

Information Technology Manage-
ment Reform Act. Public Law
104–106, Section 5131, 1996.
https://www.dol.gov/ocfo/media/regs/ITMRA.pdf
of standardized algorithms

I FIPS 140-2/3 defines, for cryptographic modules, 4 security levels:
subsets of applicable security assertions [NIS01]

[NIS01] NIST. Security Require-
ments for Cryptographic Modules,
Federal Information Processing
Standard (FIPS) 140-2, 2001.
DOI:10.6028/NIST.FIPS.140-2

(FIPS = Federal Information Processing Standards)
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4. Step 2: NTCW

#NTCW2019
NIST Threshold Cryptography Workshop 2019

March 11–12, 2019 @
NIST Gaithersburg MD, USA

www.nist.gov/image/surfgaithersburgjpg

United States
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Belgium
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Canada 1%
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Estonia 4%

France 4%

Israel 1%
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Denmark 2%

NIST Gaithersburg

March 11-12, 2019

Coutries (of affiliation) registered to the 
NIST Threshold Cryptography Workshop

About 80 attendees

A platform for open interaction:

I hear about experiences with threshold crypto;
I get to know stakeholders;
I get input to reflect on roadmap and criteria.

https://csrc.nist.gov/Events/2019/NTCW19
18/30

https://csrc.nist.gov/Events/2019/NTCW19


4. Step 2: NTCW

#NTCW2019
NIST Threshold Cryptography Workshop 2019

March 11–12, 2019 @
NIST Gaithersburg MD, USA

www.nist.gov/image/surfgaithersburgjpg

United States
75%

Belgium
9%

Canada 1%
China 1%

Estonia 4%

France 4%

Israel 1%
Italy 1%
Switzerland

2%

Denmark 2%

NIST Gaithersburg

March 11-12, 2019

Coutries (of affiliation) registered to the 
NIST Threshold Cryptography Workshop

About 80 attendees

A platform for open interaction:

I hear about experiences with threshold crypto;
I get to know stakeholders;
I get input to reflect on roadmap and criteria.

https://csrc.nist.gov/Events/2019/NTCW19
18/30

https://csrc.nist.gov/Events/2019/NTCW19


4. Step 2: NTCW

#NTCW2019
NIST Threshold Cryptography Workshop 2019

March 11–12, 2019 @
NIST Gaithersburg MD, USA

www.nist.gov/image/surfgaithersburgjpg

United States
75%

Belgium
9%

Canada 1%
China 1%

Estonia 4%

France 4%

Israel 1%
Italy 1%
Switzerland

2%

Denmark 2%

NIST Gaithersburg

March 11-12, 2019

Coutries (of affiliation) registered to the 
NIST Threshold Cryptography Workshop

About 80 attendees

A platform for open interaction:

I hear about experiences with threshold crypto;
I get to know stakeholders;
I get input to reflect on roadmap and criteria.

https://csrc.nist.gov/Events/2019/NTCW19
18/30

https://csrc.nist.gov/Events/2019/NTCW19


4. Step 2: NTCW

#NTCW2019
NIST Threshold Cryptography Workshop 2019

March 11–12, 2019 @
NIST Gaithersburg MD, USA

www.nist.gov/image/surfgaithersburgjpg

United States
75%

Belgium
9%

Canada 1%
China 1%

Estonia 4%

France 4%

Israel 1%
Italy 1%
Switzerland

2%

Denmark 2%

NIST Gaithersburg

March 11-12, 2019

Coutries (of affiliation) registered to the 
NIST Threshold Cryptography Workshop

About 80 attendees

A platform for open interaction:

I hear about experiences with threshold crypto;
I get to know stakeholders;
I get input to reflect on roadmap and criteria.

https://csrc.nist.gov/Events/2019/NTCW19
18/30

https://csrc.nist.gov/Events/2019/NTCW19


4. Step 2: NTCW

Format and content

Accepted 15 external submissions:
I 2 panels
I 5 papers
I 8 presentations

Plus:
I 2 invited keynotes
I 4 NIST talks
I 2 feedback moments

Videos, papers and presentations online at the NTCW webpage: https://csrc.nist.gov/Events/2019/NTCW19

Discussion of diverse topics:
I threshold schemes in general (motivation and implementation feasibility);
I NIST standardization of cryptographic primitives
I a post-quantum threshold public-key encryption scheme;
I threshold signatures (adaptive security; elliptic curve digital signature algorithm);
I validation of cryptographic implementations;
I threshold circuit design (tradeoffs, pitfalls, combined attacks, verification tools);
I secret-sharing with leakage resilience;
I distributed symmetric-key encryption;
I applications and experience with threshold cryptography.
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4. Step 2: NTCW

Results

A step in driving an open and transparent process towards standardization
of threshold schemes for cryptographic primitives. (See NISTIR 7977)

Some notes:
I differences in granularity (building blocks vs. full functionalities);
I separation of single-device vs. multi-party;
I importance of envisioning applications;
I stakeholders’ willingness to contribute;
I usefulness of explaining rationale (e.g., as complimented for the NISTIR);
I encouragement to move forward.

These elements are helpful for the next step ... designing a roadmap
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5. Step 3: preliminary roadmap
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5. Step 3: preliminary roadmap

Preliminary roadmap (ongoing)
We are writing a draft “preliminary roadmap”

(getting a map; deciding where to go; thinking how to get there)

clk
er.c

om/cli
part-1

5840.htm
l

Need: mapping layers (coordinates) and weighing factors

Disclaimer: the structure suggested in the next slides is still subject to change.
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5. Step 3: preliminary roadmap

Mapping layers

An abstract layered decomposition of the threshold standardization space

Four layers

: domains, routes, primitives, modes

Standardization space for threshold
schemes for cryptographic primitives

Single-device (domain) Multi-party (domain)

Route A Route B Route C Route A Route B Route C Route D

Primitive 1

... ... ... ... ...

...

...

Primitive n

Mode 1 Mode m...
...

I Route A: simple thresholdization
I Route B: compositional designs
I Route C: new primitives

I Route D: gadgets
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5. Step 3: preliminary roadmap

Some conceived examples
Primitives across routes:

I A: RSA decryption & signature; Schnorr signature; ECC key-gen;
AES (single-device) threshold circuit design against leakage.

I B: ECDSA signature; RSA key-gen; AES enciphering;
AES (single-device) threshold circuit against combined attacks.

I C: post-quantum signing & decryption; lightweight-crypto threshold.
I D: secret sharing; distributed RNG; consensus.

Modes:

I threshold signature with secret-shared key vs. multi-signature (independent keys);

I operation on secret-shared plaintext;
I honest majority; robust with fault detection;
I asynchronous environment.

Not every possible combination needs to be a standardization goal
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5. Step 3: preliminary roadmap

Weighing factors

The four layers provide a map. But where to look in the map?
openclipart.org/detail/281637

I Application motivations:
I threshold circuit design in single-device (address side-channel leakage)
I distribute trust across several operators of crypto primitives∗

I multi-signatures in crypto currencies
I privacy preserving modes (e.g., secret-shared plaintext)
I ... ∗(emphasis on approved conventional primitives)

I Useful features:
I efficiency and practicality
I suitability for automated testing
I ability to rejuvenate components
I ...
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5. Step 3: preliminary roadmap

Hereafter

Soon: Draft “preliminary roadmap” asking feedback, e.g., on:
I elements within layers, application motivations and other factors
I primitives/modes to focus on (and respective security properties)
I possible elements to adopt/adapt from other standards

Later: separate criteria for separate focuses; calls for contributions

Example routes for calls for contributions:
I algorithms for standardization
I reference implementations and comparisons
I research contributions
I ...

Possibly fit some of these in a 2nd workshop (?)
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6. Final remarks

Outline
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6. Final remarks

Final remarks

I Threshold schemes have potential to address single-points of failure:

I in technology ... when crypto implementations have vulnerabilities

I at the human level ... when crypto operators go rogue

I There exist numerous researched threshold schemes

I It is time to move towards (some) standardization

We would like to have a process in collaboration with stakeholders!
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Thank you for your attention

I Project webpage: https://csrc.nist.gov/Projects/Threshold-Cryptography
I Project email adress: threshold-crypto@nist.gov
I NISTIR 8214: https://csrc.nist.gov/publications/detail/nistir/8214/final
I NTCW webpage: https://csrc.nist.gov/Events/2019/NTCW19
I Forum: https://groups.google.com/a/list.nist.gov/forum/#!forum/tc-forum

(register for announcements; we can add your email if you send us a request)

Word cloud based on the NISTIR 8214

Presentation at the International Cryptographic Module Conference
May 16, 2019 @ Vancouver, Canada

Disclaimer. Opinions expressed in this presentation are from the author(s) and are not to be construed as official or as views of the U.S. Department of Commerce. The
identification of any commercial product or trade names in this presentation does not imply endorsement of recommendation by NIST, nor is it intended to imply that the
material or equipment identified are necessarily the best available for the purpose.

Disclaimer. Some external-source images and cliparts were included/adapted in this presentation with the expectation of such use constituting licensed and/or fair use.
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Reliability (R) — one metric of security
Probability that a security property (e.g., secrecy) never fails during a mission time

A possible model: each node fails (independently) with constant rate probability
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[BB12]

[BB12] L. T. A. N. Brandão and

A. N. Bessani. On the reliabil-
ity and availability of replicated
and rejuvenating systems under
stealth attacks and intrusions.
Journal of the Brazilian Computer
Society, 18(1):61–80, 2012.
DOI:10.1007/s13173-012-0062-
x

Time normalized: τ = 1 is the expected time to failure (ETTF) of a node

Curve R of key-secrecy in a n f τmax

Q 1-out-of-1 sig-scheme 1 0 —
U 2-out-of-3 sig-scheme 3 1 0.693

τmax = max
(

t : Rn
f (t) > R1

0(t)
)

Reliability can be degraded when increasing the fault-tolerance threshold f

Note: rejuvenation of nodes can attenuate the reliability-degradation
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Another model

What if all nodes are compromised (e.g., leaky) from the start?

Threshold scheme may still be effective,
if it increases the cost of exploitation!

(e.g., if exploiting a leakage vulnerability
requires exponential number of traces for

high-order Differential Power Analysis)
openclipart.org/detail/172330

Challenge questions:
I which models are realistic / match state-of-the-art attacks?
I what concrete parameters (e.g., n) thwart real attacks?
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Two hints

Robust k-out-of-n Threshold RSA Signature [Sho00]

[Sho00] V. Shoup. Practical
Threshold Signatures.
In B. Preneel (ed.), Advances
in Cryptology — EURO-
CRYPT 2000, pages 207–220,
Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg.
DOI:10.1007/3-540-45539-6˙15

I Works iff ≥ k parties are available: homomorphism allows combining
(slightly tweaked) sub-signatures.

I Robust: sub-signers prove (efficient NIZKP) correct sub-signatures.
(NIZK = non-interactive zero-knowledge proof of knowledge)

Threshold Schnorr (multi-)signature [BN06]

[BN06] M. Bellare and

G. Neven. Multi-signatures
in the Plain public-Key Model
and a General Forking Lemma.

In Proceedings of the 13th
ACM Conference on Computer
and Communications Security,
CCS ’06, pages 390–399, New
York, NY, USA, 2006. ACM.
DOI:10.1145/1180405.1180453

I Different public key per signer→ no dealer, dynamic signer-set
I Verifier decides the threshold and knows who signed
I DL-based homomorphism→ size equal to 1 signature

(DL = Discrete-Logarithm)
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A DL-based example: threshold Schnorr signature
(DL = Discrete-Logarithm)

(Next: ignore details — just making comparative remarks)

Non-threshold scheme [Sch90]

[Sch90] C. P. Schnorr. Efficient
Identification and Signatures for
Smart Cards.
In G. Brassard (ed.), Advances in
Cryptology — CRYPTO’ 89 Pro-
ceedings, pages 239–252, New
York, NY, 1990. Springer New
York. DOI:10.1007/0-387-34805-
0˙22

I Space: G, g (group, generator)
I KeyGen (by signer):

I Secret SignKey: x ∈ Zq
I Public VerKey: X = g−x

I Signx(m) by signer:
I R = gr

I c =q H(R||m)
I s =q r + x · c
I output σ = (s, c)

I VerifyX(σ,m):
I calculate R = gsXc

I check H(R||m) =? c

A multi-signature scheme [BN06]

[BN06] M. Bellare and G. Neven.

Multi-signatures in the Plain
public-Key Model and a General
Forking Lemma.
In Proceedings of the 13th
ACM Conference on Computer
and Communications Security,
CCS ’06, pages 390–399, New
York, NY, USA, 2006. ACM.
DOI:10.1145/1180405.1180453∗

I Space: same G, g
I KeyGen (by parties i = 1, ..., n):

I Secret SignKey: xi ∈ Zq
I Public VerKey: Xi = gxi

I Signx,L(m) by subset I ⊆ {1, ..., n}
I R =

∏
i∈I Ri =

∏
i∈I gri

I ci =q H(Xi||R||I||m)
I s =q

∑
i∈L si =

∑
i∈I(ri + xici)

I output σ = (R, s)
I Verify(σ,m):

I calculate ci = H(Xi||R||M||I||m)
I check gs =? R

∏
i∈I Xi

ci

∗Some features: no dealer; dynamic threshold (verifier decides what is
acceptable); dynamic set of signers; verifying⇒ knowing who signed.
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